在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点
的纵坐标,则点
在反比例函数
的图象上的概率一定大于在反比例函数
的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?
试用列表或画树状图的方法列举出所有点
的情形;
分别求出点
在两个反比例函数的图象上的概率,并说明谁的观点正确.
如图,抛物线形的拱桥在正常水位时,水面AB的宽为20m.涨水时水面上升了3m,达到了警戒水位,这时水面宽CD=10m.
(1)求抛物线的解析式;
(2)当水位继续以每小时0.2m的速度上升时,再经过几小时就到达拱顶?
如图,已知抛物线C1:的顶点为P, 与x轴相交于A、B两点(点A在点B的左侧),点B 的横坐标是1.
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物 线C2向右平移,平移后的抛物线记为C3,抛物线
C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明。
已知:抛物线的图象经过原点,且开口向上. 确定m的值;
求此抛物线的顶点坐标;
当x取什么值时,y随x的增大而增大?
当x取什么值时,y<0?