如图,已知,以
为直径,
为圆心的半圆交
于点
,点
为弧CF的中点,连接
交
于点
,
为△ABC的角平分线,且
,垂足为点
.
求证:
是半圆
的切线;
若
,
,求
的长.
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是。(结果保留)
如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)。
(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1;并标出△A1B1C1相应各点的坐标。
(2)求点A旋转到A1所经过的路线长。(结果保留π)
已知抛物线的顶点坐标是(8,9),且过点,求该抛物线的解析式。
解方程(2x-3)2=x2
在梯形ABCD中,AD∥BC,BA⊥AC,∠ABC = 450,AD = 2,BC = 6,以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上.
(1)求过A、D、C三点的抛物线的解析式;
(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径;
(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长;
(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的三角形与△ADC相似?若存在,直接写出点P、Q的坐标,若不存在,则说明理由.