汽车质量5t,为60KW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,g取10m/s2 ,问:
(1)汽车在此路面上行驶所能达到的最大速度是多少?
(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?
(3)若汽车从静止开始,保持额定功率做加速运动,10s后达到最大速度,求此过程中汽车的位移。
如图所示,在矩形ABCD区域内,对角线BD以上的区域存在平行于AD向下的匀强电场,对角线BD以下的区域存在垂直于纸面的匀强磁场(图中未标出),AD边长为L,AB边长为2L.一个质量为m、电荷量为+q的带电粒子(重力不计)以初速度v0从A点沿AB方向进入电场,在对角线BD的中点P处进入磁场,并从DC边上以垂直于DC边的速度离开磁场(图中未画出),求:
(1)电场强度E的大小和带电粒子经过P点时速度v的大小和方向;
(2)磁场的磁感应强度B的大小和方向.
蹦床比赛分成预备运动和比赛动作。最初,运动员静止站在蹦床上在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段。把蹦床简化为一个竖直放置的轻弹簧,弹力大小F="kx" (x为床面下沉的距离,k为常量)。质量m=50kg的运动员静止站在蹦床上,床面下沉x0=0.10m;在预备运动中,假设运动员所做的总功W全部用于其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为△t=2.0s,设运动员每次落下使床面压缩的最大深度均为xl。取重力加速度g=I0m/s2,忽略空气阻力的影响。
(1)求常量k,并在图中画出弹力F随x变化的示意图;
(2)求在比赛动作中,运动员离开床面后上升的最大高度hm;
(3)借助F-x 图像可以确定弹力做功的规律,在此基础上,求 x1和W的值
某运动员做跳伞训练,他从悬停在空中的直升飞机上由静止跳下,跳离飞机一段时间后打开降落伞做减速下落。他打开降落伞后的速度图线如图甲所示。降落伞用8根对称的绳悬挂运动员,每根绳与中轴线的夹角均为37°,如图乙。已知人的质量为50 kg,降落伞质量也为50 kg,不计人所受的阻力,打开伞后伞所受阻力Ff与速度v成正比,即Ff=kv (g取10 m/s2,sin 53°=0.8,cos 53°=0.6)。求:
(1)打开降落伞前人下落的距离为多大?
(2)求阻力系数k和打开伞瞬间的加速度a的大小和方向?
(3)悬绳能够承受的拉力至少为多少?
如图所示,空间某平面内有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与平面垂直的匀强磁场,磁感应强度大小都为B.折线的顶角∠A=90°,P、Q是折线上的两点,AP=AQ=L.现有一质量为m、电荷量为q的带负电微粒从P点沿PQ方向射出,不计微粒的重力.
(1)若P、Q间外加一与磁场方向垂直的匀强电场,能使速度为v0射出的微粒沿PQ直线运动到Q点,则场强为多大?
(2)撤去电场,为使微粒从P点射出后,途经折线的顶点A而到达Q点,求初速度v应满足什么条件?
(3)求第(2)中微粒从P点到达Q点所用时间的最小值.
如图所示,真空中有一半径r=0.5 m的圆形磁场区域,圆与x轴相切于坐标原点O,磁场的磁感应强度大小B=2×10-3 T,方向水平向里,在x1=0.5 m到x2=1.0 m区域内有一个方向竖直向下的匀强电场,电场强度E=2.0×103 N/C.在x=2.0 m处有竖直放置的一足够大的荧光屏.现将比荷为=1×109 C/kg的带负电粒子从O点处射入磁场,不计粒子所受重力.(sin37°=0.6,cos37°=0.8)
(1)若粒子沿y轴正方向射入,恰能从磁场与电场的相切处进入电场,求粒子最后到达荧光屏上位置的y的坐标.
(2)若粒子以(1)问中相同速率从O点与y轴成37°角射入第二象限,求粒子到达荧光屏上位置的y坐标.