(1)观察发现如题(a)图,若点A,B在直线同侧,在直线
上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线
的对称点
,连接
,与直线
的交点就是所求的点P 再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 .
(2)实践运用
如题(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.
已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等。(1+1+1+1+1+4=9分)
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=38°,则∠2=°,∠3=°。
(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°。
(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= ___°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
.小明在学习了“除零以外的任何数的零次幂的值为1”后遇到这样一道题:如果,求x的值,他解出来的结果为
,老师说小明考虑问题不全面,你能帮助小明解决这个问题吗?
设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(24)25=1625,即25个16相乘的积;n=375=(33)25=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小
从一个五边形中切去一个三角形,得到一个三角形和一个新的多边形,那么这个新的多边形的内角和等于多少度?请画图说明.