游客
题文

要从甲,乙两名运动员中选拔一人参加2012年伦敦奥运会跳水项目,对甲乙两人进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出成绩茎叶图如图所示.
(1)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员更合适?
(2)若将频率视为概率,对甲运动员在今后3次的比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望.

科目 数学   题型 解答题   难度 较易
知识点: 随机抽样
登录免费查看答案和解析
相关试题

(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问
题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、
四轮问题的概率分别为,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;

(本小题满分10分)已知向量
(Ⅰ)若,求的值;
(Ⅱ)设,求的取值范围.

已知函数.
(Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;
(Ⅲ)求证:.

已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,,二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)求平面BEF与平面BAC所成的锐二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号