设函数
(1)当时,求函数
的最大值;
(2)令,(
)其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当,
,方程
有唯一实数解,求正数
的值.
如图,在四棱锥中,底面
是矩形,
底面
,
是
的中点,已知
,
,
,求:(Ⅰ)三角形
的面积;(II)三棱锥
的体积
为加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,教育部门主办了全国中学生航模竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙和丁四支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
⑾求决赛中甲、乙两支队伍出场顺序相邻的概率.
在△中,角
的对边分别为
,已知
,且
,
,求: (Ⅰ)
.⑾△
的面积.
设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.
(1)若直线m与x轴正半轴的交点为T,且·
=1,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·
,若λ∈[-2,-1],求|
+
|(T为(1)中的点)的取值范围.
已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).