(本小题满分12分)
某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的。约定用有序实数对表示“甲在
号车站下车,乙在
号车站下车”。
(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(Ⅱ)求甲、乙两人同在第3号车站下车的概率;
(Ⅲ)求甲、乙两人在不同的车站下车的概率。
(本小题满分12分)如图,在四棱柱中,侧面
⊥底面
,
,底面
为直角梯形,其中
,O为
中点.
(Ⅰ)求证:平面
;
(Ⅱ)求锐二面角A—C1D1—C的余弦值.
(本小题满分12分)
设数列的前
项和为
,且
;数列
为等差数列,且
.
(1)求数列的通项公式;
(2)若(
=1,2,3…),
为数列
的前
项和.求
.
(本小题满分12分)已知
(Ⅰ)求函数的单调增区间
(Ⅱ)在中,
分别是角
的对边,且
,求
的面积.
如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线
在
轴上的截距为
并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围;
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.
设定点M,动点N在圆
上运动,线段MN的
中点为点P.
(1)求MN的中点P的轨迹方程;
(2)直线与点P的轨迹相切,且
在
轴.
轴上的截距相等,求直线
的方程.