选修4-1:几何证明选讲
如图,△内接于⊙
,
,直线
切⊙
于点
,弦
,
相交于点
.
(1)求证:△≌△
;
(2)若,求
长.
在△ABC中,角A、B、C所对的边分别是a、b、c,tanA=,cosB=
.
(Ⅰ)求角C;
(Ⅱ)若△ABC的最短边长是,求最长边的长.
(Ⅰ)已知||=4,|
|=3,(2
-3
)·(2
+
)=61,求
与
的夹角θ;
(Ⅱ)设=(2,5),
=(3,1),
=(6,3),在
上是否存在点M,使
,若存在,求出点M的坐标,若不存在,请说明理由.
已知函数的定义域为
,值域为
.试求函数
(
)的最小正周期和最值.
已知椭圆的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆
相交于
、
两点。
①若线段中点的横坐标为
,求斜率
的值;
②已知点,求证:
为定值
若是函数
的两个极值点。
(Ⅰ)若,求函数
的解析式;
(Ⅱ)若,求
的最大值。