在△ABC中,角A、B、C所对的边分别是a、b、c,tanA=,cosB=
.
(Ⅰ)求角C;
(Ⅱ)若△ABC的最短边长是,求最长边的长.
已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为
的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
设动点到定点
的距离比它到
轴的距离大
.记点
的轨迹为曲线
(1)求点的轨迹方程;
(2)设圆过
,且圆心
在
的轨迹上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
设椭圆的离心率为
=
,点
是椭圆上的一点,且点
到椭圆
两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点
关于直线
的对称点为
,求
的取值范围.
如图,已知直线的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线
上的射影依次为点D,K,E.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线L交y轴于点M,且,当m变化时,求
的值;
(3)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.
已知向量,经过定点
且方向向量为
的直线与经过定点
且方向向量为
的直线交于点M,其中
R,常数a>0.
(1)求点M的轨迹方程;
(2)若,过点
的直线与点M的轨迹交于C、D两点,求
的取值范围.