(Ⅰ)已知||=4,|
|=3,(2
-3
)·(2
+
)=61,求
与
的夹角θ;
(Ⅱ)设=(2,5),
=(3,1),
=(6,3),在
上是否存在点M,使
,若存在,求出点M的坐标,若不存在,请说明理由.
在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:;
(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:.
在芦淞服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第1周价格),并且每周价格上涨,如图示,从第6周开始到第11周保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售。
(1)求销售价格(元/件)与周次
之间的函数关系式;
(2)若这种时装每件进价Z(元/件)与周次次之间的关系为Z=
(1≤
≤16),且
为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?
如图,是⊙
的直径,
是⊙
上一点,
是的
中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.
(1)求证:AF⊥EF;
(2)若,AB=5,求线段BE的长.
如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF.
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
中华文明,源远流长;中华汉字,寓意深广。为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分。为了更好地了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给的信息,解答下列问题:
(1)a= ,b= .
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在哪个分数段?
(4)若成绩在90分及以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?