在形如的式子中,我们已经研究过两种情况:①已知a和b,求N,这是乘方运算;②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算。
定义:如果(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:
,例如:求
,因为
=8,所以
=3;又比如∵
,∴
.
根据定义计算:(本小题6分)
①=____;②
= ;
③如果,那么x= 。
设
则
(a>0,a≠1,M、N均为正数),
∵,∴
∴
,
即
这是对数运算的重要性质之一,进一步,我们还可以得出:= .(其中M1、M2、M3、……、Mn均为正数,a>0,a≠1)(本小题2分)
请你猜想:
(a>0,a≠1,M、N均为正数).(本小题2分)
如图,以直角坐标系的原点O为圆心作⊙O,点M、N是⊙O上的两点,M(-1,2),N(2,1)
(1)试在x轴上找点P使PM+PN最小,求出P点的坐标;
(2)若在坐标系中另有一直线AB,A(10,0),点B在y轴上,∠BAO=30°,⊙O以0.2个单位/秒的速度沿x轴正方向运动,问圆在运动过程中与该直线有公共点的时间有长?
如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
(1)求证:DE=DC.
(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.
在国家政策的宏观调控下,某市的商品房成交均价由2012年10月底的20000元/m2下降到2012年12月底的16200元/m2.
(1)求2012年11、12两月平均每月降价的百分率是多少?
(2)如果房价继续按此降价的百分率回落,请你预测到2013年2月底该市的商品房成交均价是否会跌破13000元/m2?并说明理由.
已知关于x的一元二次方程.
(1)若此方程有两个实数根,求实数k的取值范围;
(2)如果此方程的两个实数根为,
,且满足
,求实数k的值.