游客
题文

生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环.如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?
我们可以按以下思路分析:
首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:

最后二次射击总成绩
第8次射击需得成绩
20环
 
19环
 
18环
 

根据以上分析可得如下解答:
解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:______________________________________,
解得:______________.
所以第8次射击不能少于________环.

科目 数学   题型 解答题   难度 较易
知识点: 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

解不等式组:

.计算:

(本小题满分7分)
已知:等边三角形ABC
如图1,P为等边△ABC外一点,且∠BPC=120°.
试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD

(本小题满分8分)
如图,抛物线>0)与y轴交于点C,与x轴交于A 、B两点,点 A在点B的左侧,且

(1)求此抛物线的解析式;
(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,
△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.

(本小题满分7分)
已知:关于的一元二次方程
(1)若方程有两个不相等的实数根,求的取值范围;
(2)在(1)的条件下,求证:无论取何值,抛物线y=总过轴上的一个固定点;
(3)若为正整数,且关于的一元二次方程有两个不相等的整数根,把抛物线y=向右平移4个单位长度,求平移后的抛物线的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号