游客
题文

完成下面的证明.
已知,如图所示,BCE,AFE是直线,
AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE
证明:∵  AB∥CD (已知)
∴ ∠4 =∠          (                                           )
∵ ∠3 =∠4 (已知)
∴  ∠3 =∠           (                                         )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF  (                                       )
即:∠          =∠         
∴ ∠3 =∠           (                                          )
∴ AD∥BE           (                                            )

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE
求证:AH=2BD

如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H试猜测线段AE和BD数量关系,并说明理由

如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4

如图,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

如图所示,在平面直角坐标系中,M是轴正半轴上一点,⊙M与轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程的两根,ON是⊙M的切线,N为切点,N在第四象限.

(1)求⊙M的直径;
(2)求直线ON的函数关系式;
(3)在轴上是否存在一点T,使△OTN是等腰三角形?若存在,求出T的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号