为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.
(本小题满分13分)
已知数列满足
,数列
满足
,数列
满足.
(Ⅰ)求数列的通项公式;
(Ⅱ),
,试比较
与
的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差
是一个常数,显然在本题的数列
中,
不是一个常数,但
是否会小于等于一个常数
呢,若会,请求出
的范围,若不会,请说明理由.
(本小题满分13分)
某设计部门承接一产品包装盒的设计(如图所示),客户除了要求、
边的长分别为
和
外,还特别要求包装盒必需满足:①平面
平面
;②平面
与平面
所成的二面角不小于
;③包装盒的体积尽可能大。
若设计部门设计出的样品满足:与
均为直角且
长
,矩形
的一边长为
,请你判断该包装盒的设计是否能符合客户的要求?说明理由.
(本小题满分13分)
某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,
(
,
),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.
(Ⅰ)已知小曹在第一轮抽奖中被抽中,求小曹在第二轮抽奖中获奖的概率;
(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望;
(Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.
(本小题满分13分)
已知圆的圆心为
,圆
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点,使得
为钝角?若存在,求出点
横坐标的取值范围;若不存在,说明理由.
(本小题满分13分)
在锐角中,
三内角所对的边分别为
.
设,
(Ⅰ)若,求
的面积;
(Ⅱ)求的最大值.