如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3. 求该抛物线所对应的函数关系式;
将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N
①当t=时,判断点P是否在直线ME上,说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?说明理由.
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=的图像经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x的取值范围.
如图,四边形OABC为菱形,点A,B在以O为圆心的弧上,若OA=2,∠1=∠2,求扇形ODE的面积.
关于X的一元二次方程有两个不相等的实数根
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根。
甲、乙两支仪仗队队员的身高(单位:厘米)如下:
甲队:178,177,179,178,177,178,177,179,178,179;
乙队:178,179,176,178,180,178,176,178,177,180;
(1)将下表填完整:
身高(厘米) |
176 |
177 |
178 |
179 |
180 |
甲队(人数) |
0 |
3 |
4 |
0 |
|
乙队(人数) |
2 |
1 |
1 |
(2)甲队队员身高的平均数为厘米,乙队队员身高的平均数为厘米;
(3)你认为哪支仪仗队身高更整齐?请用统计知识说明理由。
如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.
(1)求证:BD="EC;" (2)若∠E="50°" ,求∠BAO的大小.