游客
题文

已知函数
(1)若,求的值;
(2)设三内角所对边分别为,求上的值域.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

..(本小题满分14分)定义在上的函数,如果满足;对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数.
(Ⅰ)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(Ⅱ)若上的有界函数,且的上界为3,求实数的取值范围;
(Ⅲ)若,求函数上的上界的取值范围.

..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:
(Ⅰ)在直角坐标平面内,已知,对任意,试判断的形状;
(Ⅱ)在平面内,已知中,的中点,,求证:.

.(本小题满分13分)一个几何体的直观图及三视图如图所示,分别是的中点.
(Ⅰ)写出这个几何体的名称;
(Ⅱ)求证:
(Ⅲ)求多面体的体积.
      

.(本小题满分13分)汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)

(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试
写出关于的函数关系式,并求其定义域.
(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?

.(本小题满分13分)已知是矩形,平面的中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成的角.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号