在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东
+
(其中sin
=
,
)且与点A相距10
海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,,
=
,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
在二项式的展开式中,前三项系数的绝对值成等差数列
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.
如图,圆柱内有一个三棱柱
,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。
(Ⅰ)证明:平面平面
;
(Ⅱ)设AB=,在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
。
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面
所成的角为
,当
取最大值时,求
的值。
设是不等式
的解集,整数
。
(1)记使得“成立的有序数组
”为事件A,试列举A包含的基本事件;
(2)设,求
的分布列及其数学期望
。