若圆过点
且与直线
相切,设圆心
的轨迹为曲线
,
、
为曲线
上的两点,点
,且满足
.
(1)求曲线的方程;
(2)若,直线
的斜率为
,过
、
两点的圆
与抛物线在点
处有共同的切线,求圆
的方程;
(3)分别过、
作曲线
的切线,两条切线交于点
,若点
恰好在直线
上,求证:
与
均为定值.
(本小题满分12分)已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数
的取值范围.
. (本小题满分12分)
已知函数
在
处取得极值.
(Ⅰ) 求;
(Ⅱ) 设函数,如果
在开区间
上存在极小值,求实数
的取值范围.
(本小题满分12分)已知奇函数的定义域为
,且
在
上是增函数, 是否存在实数
使得
, 对一切
都成立?若存在,求出实数的取值范围;若不存在,请说明理由.
(本小题满分12分)某企业生产甲、乙两种产品, 根据市场调查与预测, 甲产品
的利润与投资成正比, 其关系如图1, 乙产品的利润与投资的算术平方根成正比, 其关系如
图2 (注: 利润与投资的单位: 万元).
(Ⅰ) 分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ) 该企业筹集了100万元资金投入生产甲、乙两种产品, 问: 怎样分配这100万元资金, 才能使企业获得最大利润, 其最大利润为多少万元?
(本小题满分10分)
已知函数在定义域
上为增函数,且满足
,
.
(Ⅰ) 求的值;
(Ⅱ) 解不等式
.