如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,AD
DC,
AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
设全集,已知集合
,
.
(1)求;
(2)记集合,已知集合
,若
,求实数a的取值范围.
已知命题:方程
表示焦点在
轴上的椭圆;命题
:双曲线
的离心率
.若
或
为真命题,
且
为假命题,求实数
的取值范围.
解关于的不等式:
(
)
对于定义在实数集上的两个函数
,若存在一次函数
使得,对任意的
,都有
,则把函数
的图像叫函数
的“分界线”。现已知
(
,
为自然对数的底数),
(1)求的递增区间;
(2)当时,函数
是否存在过点
的“分界线”?若存在,求出函数
的解析式,若不存在,请说明理由。