如图, 在矩形中,点
分别在线段
上,
.沿直线
将
翻折成
,使平面
.
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段
上,若沿直线
将四边形
向上翻折,使
与
重合,求线段
的长。
某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请A片区房源的概率;
(2)申请的房源所在片区的个数的ξ分布列与期望.
设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足
,求函数f(x)在
上的最大值和最小值.
设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(1)若a1,S2,﹣2a2成等比数列,求S2和a3.
(2)求证:对k≥3有0≤ak≤.
设函数
(1)若
为
的极值点,求实数
;
(2)求实数
的取值范围,使得对任意的
,恒有
成立.注:e为自然对数的底数.
已知抛物线 : ,圆 : 圆心为点
(1)求点
到抛物线
的准线的距离;
(2)已知点
是抛物线
上一点(异于原点),过点
作圆
的两条切线,交抛物线
于
两点,若过
两点的直线
垂直于
,求直线
的方程.