游客
题文

已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。
(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;
(2)记1号,2号射箭运动员,射箭的环数为所有取值为0,1,2,3...,10)。   
根据教练员提供的资料,其概率分布如下表:


0
1
2
3
4
5
6
7
8
9
10

0
0
0
0
0.06
0.04
0.06
0.3
0.2
0.3
0.04

0
0
0
0
0.04
0.05
0.05
0.2
0.32
0.32
0.02

 
① 若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
② 判断1号,2号射箭运动员谁射箭的水平高?并说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 随机事件
登录免费查看答案和解析
相关试题

已知在 ABC 中, A+B=3C 2sin A - C =sinB

(1)求 sinA

(2)设 AB=5 ,求 AB 边上的高.

[选修4-5:不等式选讲]

已知 f x =2 x + x - 2

(1)求不等式 f x 6-x 的解集;

(2)在直角坐标系 xOy 中,求不等式组 f x y x + y - 6 0 所确定的平面区域的面积.

[选修4-4:坐标系与参数方程]

在直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ=2sinθ π 4 θ π 2 ,曲线 C 2 : x = 2 cos α y = 2 sin α α 为参数, π 2 <α<π ).

(1)写出 C 1 的直角坐标方程;

(2)若直线 y=x+m 既与 C 1 没有公共点,也与 C 2 没有公共点、求 m 的取值范围.

已知函数 f x = 1 x + a ln 1 + x

(1)当 a=-1 时,求曲线 y=f x 在点 1 , f 1 处的切线方程;

(2)是否存在 a b ,使得曲线 y=f 1 x 关于直线 x=b 对称,若存在,求 a b 的值,若不存在,说明理由;

(3)若 f x 0 , + 存在极值,求 a 的取值范围.

已知椭圆 C: y2 a2 + x2 b2 =1 a > b > 0 的离心率为 5 3 ,点 A - 2 , 0 C 上.

(1)求 C 的方程;

(2)过点 - 2 , 3 的直线交 C 于点 P Q 两点,直线 AP AQ y 轴的交点分别为 M N ,证明:线段 MN 的中点为定点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号