现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) |
[15,25![]() |
[25,35![]() |
[35,45![]() |
[45,55![]() |
[55,65![]() |
[65,75![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
|
月收入不低于55百元的人数 |
月收入低于55百元的人数 |
合计 |
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
|
|
|
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:,其中
.)
参考值表:
P(![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
已知数列中,
,且当
时,函数
取得极值。
(1)若,求数列
的通项公式;
(2)设数列的前
项和为
,试证明:
时,
.
在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况
(1)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;
(2)设为选出的4个人中选《数学史与不等式选讲》的人数,求
的分布列和数学期望
如图,侧棱垂直底面的三棱柱的底面
位于平行四边形
中,
,
,
,点
为
中点.
(1)求证:平面平面
.
(2)设二面角的大小为
,直线
与平面
所
成的角为,求
的值.
已知函数
(1)求函数的最小值和最小正周期;
(2)设△的内角
对边分别为
,且
,若
与
共线,求
的值.
设为实数,函数
.
(1)当时,判断函数
的奇偶性;
(2)求的最小值;