某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
“没时间”锻炼的人数是多少?并补全频数分布直方图;
2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
请根据以上结论谈谈你的看法.
已知△ABC是等边三角形,点P是AC上一点,PE⊥BC于点E,交AB于点F,在CB的延长线上截取BD=PA,PD交AB于点I,.
(1)如图1,若,则
= ,
= ;
(2)如图2,若∠EPD=60º,试求和
的值;
(3)如图3,若点P在AC边的延长线上,且,其他条件不变,则
= .(只写答案不写过程)
某公司有型产品40件,
型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
![]() |
![]() |
|
甲店 |
200 |
170 |
乙店 |
160 |
150 |
(1)设分配给甲店型产品
件,这家公司卖出这100件产品的总利润为
(元),求
关于
的函数关系式,并求出
的取值范围;
(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值。
如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,
(1)求证:△ABC≌△ADE
(2)若AE∥BC,且∠E= ∠CAD,求∠C的度数。
如图,在平面直角坐标系中,函数的图象
是第一、三象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线的对称点
的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线
的对称点
、
的位置,并写出它们的坐标:
、
;
(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点
的坐标为;
(3)运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.
已知一次函数的图像可以看作是由直线
向上平移6个单位长度得到的,且
与两坐标轴围成的三角形面积被一正比例函数分成面积的比为1:2的两部分,求这个正比例函数的解析式。