如图,若正方形ABCD的四个顶点恰好分别在四条平行线l1、l2、l3、l4上,设这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h3;
(2)现在平面直角坐标系内有四条直线l1、l2、l3、x轴,且l1∥l2∥l3∥x轴,若相邻两直线间的距离为1,2,1,点A(4,4)在l1,能否在l2、l3、x轴上各找一点B、C、D,使以这四个点为顶点的四边形为正方形,若能,请直接写出B、C、D的坐标;若不能,请说明理由。
若 的整数部分是 ,小数部分是 ,求 的值.
在等腰梯形 中, ,点 在下底边 上,点 在腰 上.
(1)若 平分等腰梯形 的周长,设 长为 ,试用含 的代数式表示 的面积;
(2)是否存在线段 将等腰梯形 的周长和面积同时平分?若存在,求出此时 的长;若不存在,请说明理由;
(3)是否存在线段 将等腰梯形 的周长和面积同时分成 的两部分?若存在,求出此时 的长;若不存在,请说明理由.
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 ,动点 以每秒 个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 .
(1)求点 的坐标;
(2)求 关于 的函数解析式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,已知二次函数的图象与 轴交于 和 两点,与 轴交于 ,对称轴为直线 ,直线 经过点 ,且与 轴交于点 ,与抛物线交于点 ,与对称轴交于点 .
(1)求抛物线的解析式和 的值;
(2)在 轴上是否存在点 ,使得以 为顶点的三角形与 相似,若存在,求出点 的坐标;若不存在,试说明理由;
(3)直线 上有 两点 在 的左侧 ,且 ,若将线段 在直线 上平移,当它移动到某一位置时,四边形 的周长会达到最小,请求出周长的最小值(结果保留根号).
在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲线连杆机构”.
小明受此启发设计了一个“双连杆机构”,设计图如图①,两个固定长度的“连杆” 的连接点 在 上,当点 在 上转动时,带动点 分别在射线 上滑动, .当 与 相切时,点 恰好落在 上,如图②.请仅就图②的情形解答下列问题.
(1)求证: ;
(2)若 的半径为 ,求 的长.