如图,抛物线y=+bx+c的顶点为C(0,-
),与x轴交于点A、B,连接AC、BC,得等边△ABC. T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒
个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动. 设运动时间为t秒.
(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.
某公司专销产品,第一批产品
上市40天内全部售完.该公司对第一批产品
上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品
的销售利润与上市时间的关系.
(1)试写出第一批产品的市场日销售量
与上市时间的关系式;
(2)第一批产品上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)
直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是中点.求证:
(1)DM=BM;
(2)MN⊥BD.
老师给初二(10)班同学分练习本,如果每人分到4本,那么还剩24本;如果每人分到5本,那么只有一个同学分到但不足5本。求这个班的人数
如图,已知 △ABC、△ADE均为等边三角形,点D是BC延长线上一点,连结CE,求证:BD=CE
解不等式组,并在数轴上表示解集。
(1)(2)