已知椭圆的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切。
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)设C2与x轴交于点Q,不同的两点R、S在C2上,且 满足,求
的取值范围。
(本小题满分12分)
已知平面直角坐标系中,,
,
,
.
(Ⅰ)求的最小正周期和对称中心;
(Ⅱ)求在区间
上的单调递增区间.
(本小题满分14分)在数列中,
是数列
前
项和,
,当
(I)求证:数列是等差数列;
(II)设求数列
的前
项和
;
(III)是否存在自然数,使得对任意自然数
,都有
成立?若存在,求出
的最大值;若不存在,请说明理由.
(本小题满分14分)已知,
(Ⅰ)若,求实数
的值;
(Ⅱ)若是
的充分条件,求实数
的取值范围.
(本小题满分12分)某工厂用万元钱购买了一台新机器,运输安装费用
千元,每年投保、动力消耗的费用也为
千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为
千元,第二年为
千元,第三年为
千元,依此类推,即每年增加
千元.
(Ⅰ)求使用年后,保养、维修、更换易损零件的累计费用S(千元)关于
的表达式;
(Ⅱ)问这台机器最佳使用年限是多少年?并求出年平均费用(单位:千元)的最小值.(最佳使用年限是指使年平均费用最小的时间,年平均费用=(购入机器费用+运输安装费用+每年投保、动力消耗的费用+保养、维修、更换易损零件的累计费用)÷机器使用的年数 )
(本小题满分13分)(Ⅰ)若,求实数
的取值范围;
(Ⅱ)二次函数,满足
,
,求
的取值范围.