(本小题满分14分)
如图,已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为
.设直线
与椭圆
相交于
两点,点
关于
轴对称点为
.
(1)求椭圆的方程;
(2)若以线段为直径的圆过坐标原点
,求直线
的方程;
(3)试问:当变化时,直线
与
轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
(本小题满分14分)
已知函数
.
(I) 若且函数
为奇函数,求实数
;
(II) 若试判断函数
的单调性;
(III) 当,
,
时,求函数
的对称轴或对称中心.
(本小题满分12分)
设椭圆:
的焦点分别为
、
,抛物线
:
的准线与
轴的交点为
,且
.
(I)求的值及椭圆
的方程;
(II)过、
分别作互相垂直的两直线与椭圆分别交于
、
、
、
四点(如图),
求四边形面积的最大值和最小值.
本小题满分12分)
已知数列满足
+
=4n-3(n∈
).
(I)若=2,求数列
的前n项和
;
(II)若对任意n∈,都有
≥5成立,求
为偶数时,
的取值范围.
(本小题满分12分)
张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为
,
.
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择
哪条上班路线更好些,并说明理由.
(本小题满分12分)
如图,四边形是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)求二面角的余弦值.