游客
题文

(本小题满分14分)
如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为
(1)求椭圆的方程;
(2)若以线段为直径的圆过坐标原点,求直线的方程;
(3)试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知函数.
(I) 若且函数为奇函数,求实数
(II) 若试判断函数的单调性;
(III) 当时,求函数的对称轴或对称中心.

(本小题满分12分)
设椭圆的焦点分别为,抛物线:的准线与轴的交点为,且
(I)求的值及椭圆的方程;
(II)过分别作互相垂直的两直线与椭圆分别交于四点(如图),
求四边形面积的最大值和最小值.

本小题满分12分)
已知数列满足=4n-3(n).
(I)若=2,求数列的前n项和
(II)若对任意n,都有≥5成立,求为偶数时,的取值范围.

(本小题满分12分)
张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1L2两条路线(如图),L1路线上有A1A2A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择
哪条上班路线更好些,并说明理由.

(本小题满分12分)
如图,四边形是直角梯形,∠=90°,=1,=2,又
=1,∠=120°,,直线与直线所成的角为60°.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号