游客
题文

已知方程组的解满足,求的值.

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一
些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图(2),测得学校旗杆的影长为900cm.
丙组:如图(3),测得校园景灯的灯罩部分影长HQ为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm.(灯罩视为圆柱体,灯杆粗细忽略不计且穿过灯罩中轴线)

(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度是多少米;
(2)请根据甲、丙两组得到的信息,求:①灯罩底面半径MK的长; ②灯罩的高度KK’的长.

如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则的值为
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;

如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.

(1)求证:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.

如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.

(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)

某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为万元.
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号