某中学组织中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
已知函数.
(1)求证:不论为何实数,此二次函数的图像与
轴都有两个不同交点;
(2)若函数有最小值
,求函数表达式.
已知抛物线的顶点在抛物线
上,且抛物线在
轴上截得的线段长是
,求
和
的值.
下表给出了代数式与
的一些对应值:
![]() |
… |
0 |
1 |
2 |
3 |
4 |
… |
![]() |
… |
3 |
![]() |
3 |
… |
(1)请在表内的空格中填入适当的数;
(2)设,则当
取何值时,
?
(3)请说明经过怎样平移函数的图象得到函数
的图象.
抛物线过点
,顶点为M点.
(1)求该抛物线的解析式;
(2)试判断抛物线上是否存在一点P,使∠POM=90˚.若不存在,说明理由;若存在,求出P点的坐标;
(3)试判断抛物线上是否存在一点K,使∠OMK=90˚,说明理由.
如图,为抛物线
上对称轴右侧的一点,且点
在
轴上方,过点
作
垂直
轴于点
,
垂直
轴于点
,得到矩形
.若
,求矩形
的面积.