已知为椭圆
的左、右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
已知函数 .
(Ⅰ)若函数 的图像过原点,且在原点处的切线斜率是-3,求a,b的值;
(Ⅱ)若函数
在区间
上不单调,求a的取值范围.
设 为数列 的前 n项和, ,其中 是常数.
(Ⅰ)求 及 ;
(Ⅱ)若对于任意的 , , , 成等比数列,求 k的值.
如图, , , , ,P,Q分别为AE,AB的中点.
(Ⅰ)证明: ;
(Ⅱ)求 与 所成角的正弦值.
在 中,角A,B,C所对的边分别为a,b,c,且满足 , .
(Ⅰ)求 的面积;
(Ⅱ)若 ,求 的值.
双曲线 ,圆 在第一象限交点为A, ,曲线 。
(1)若 ,求b;
(2)若 , 与x轴交点记为 ,P是曲线 上一点,且在第一象限,并满足 ,求∠ ;
(3)过点 且斜率为 的直线 交曲线 于M、N两点,用b的代数式表示 ,并求出 的取值范围。