已知双曲线的焦点为,且离心率为2;(1)求双曲线的标准方程;(2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程.
设,函数的定义域为集合。 求: (1); (2),,
计算以下式子的值: (1); (2).
设函数. (Ⅰ)当时,求函数的图象在点处的切线方程; (Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的极坐标方程为. (1)把直线的极坐标方程化为直角坐标系方程; (2)已知为椭圆上一点,求到直线的距离的最大值。
如图,△是等边三角形, ,,,,分别是,,的中点,将△沿折叠到的位置,使得. (1)求证:平面平面; (2)求证:平面.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号