(本小题满分12分)
已知函数f(x)=(x∈R).
⑴当f(1)=1时,求函数f(x)的单调区间;
⑵设关于x的方程f(x)=的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
⑶在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
(本小题满分12分)
设是定义在R上的函数,且
(1)若;
(2)若.
(本小题满分12分)
如图,在三棱锥P—ABC中,AB⊥BC,AB =" BC" = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC.
(1)求证:ED∥平面PAB;
(2)求直线AB与平面PAC所成的角;
(3)当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?
(本小题满分12分)
有2名老师,3名男生,4名女生照相留念,在下列情况中,各有多少种不同站法?
(写出过程,最后结果用数字表示)
(1)男生必须站在一起;
(2)女生不能相邻;
(3)若4名女生身高都不等,从左到右女生必须由高到矮的顺序站;
(4)老师不站两端,男生必须站中间.
(本小题满分13分) 已知展开式的前三项系数成等差数列.
(1)求n的值;
(2)求展开式中二项式系数最大的项;
(3)求展开式中系数最大的项.
(本小题满分13分) 如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求二面角B—AC—G的大小.