(本小题满分16分)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
(本小题满分14分)
在平面直角坐标系中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.
(1)求椭圆E的离心率;
(2)判断直线与圆
的位置关系,并说明理由;
(3)若圆的面积为
,求圆
的方程.
(本小题满分14分)
已知函数.
(1)设,且
,求
的值;
(2)在△ABC中,AB=1,,且△ABC的面积为
,求sinA+sinB的值.
.(本小题满分14分)
如图,平面平面
,点E、F、O分别为线段PA、PB、AC的中点,点
G是线段
CO的中点,
,
.求证:
(1)平面
;
(2)∥平面
.
(本小题满分14分)
有个首项都是1的等差数列,设第
个数列的第
项为
,公差为
,并且
成等差数列.
(Ⅰ)证明(
,
是
的多项式),并求
的值
(Ⅱ)当时,将数列
分组如下:
(每组数的个数构成
等差数列).
设前组中所有数之和为
,求数列
的前
项和
.
(Ⅲ)设是不超过20的正整数,当
时,对于(Ⅱ)中的
,求使得不等式
成立的所有
的值.