设对于任意实数x,不等式
恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式:
已知
.
(1)当
,
时,若不等式
恒成立,求
的范围;
(2)试判断函数
在
内零点的个数,并说明理由.
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,
(
为圆柱的高,
为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为
千元.
(1)写出
关于
的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的
的值.
已知复数
(
是虚数单位)在复平面上对应的点依次为
,点
是坐标原点.
(1)若
,求
的值;
(2)若
点的横坐标为
,求
.
已知数列
和
满足:
,其中
为实数,
为正整数.
(1)对任意实数
,求证:
不成等比数列;
(2)试判断数列
是否为等比数列,并证明你的结论.
(3)设
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
阅读:
已知
、
,
,求
的最小值.
解法如下:
,
当且仅当
,即
时取到等号,
则
的最小值为
.
应用上述解法,求解下列问题:
(1)已知
,
,求
的最小值;
(2)已知
,求函数
的最小值;
(3)已知正数
、
、
,
,
求证:
.