游客
题文

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由
设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由.

图1                  图2                       图3

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,已知△ABC中AB=AC.

(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.

(1)计算:-8sin45°-
(2)先化简,然后x在﹣1、0、1、2四个数中任选一个合适的数代入求值.

如图,已知直线分别交x轴、y轴于A、B两点,抛物线经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立.

(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由.
(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.
(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长.

如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=

(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号