如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2cm,AB=8cm,CD=10cm.
(1)求梯形ABCD的周长;
(2)动点P从点B出发,以1cm/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以1cm/s的速度沿C→D→A方向向点A运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之结束,设运动时间为t秒.问:
在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在开学初针对暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:
时间分组(时) |
0.5~20.5 |
20.5~40.5 |
40.5~60.5 |
60.5~80.5 |
80.5~100.5 |
频数(人) |
20 |
25 |
30 |
15 |
10 |
(1)在这个问题中的样本是,其中暑假做家务的时间在20.5~40.5的频率为_____.
(2)根据表中数据补全图中的频数分布直方图.
(3)样本的中位数所在时间段的范围是.
(4)若该学校有学生1260人,那么约有名学生在暑假做家务的时间在40.5~100.5小时之间。
如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A’B’C’的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A"B"C",如果△ABC内部一点M的坐标为(x,y),写出△A"B"C"中M的对应点M"的坐标。
先化简:,若其结果等于
,试确定x的值.
解不等式组,并判断x=
是否为该不等式组的解。
解方程: