今年春北方严重干旱,某社区人畜饮水紧张,每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨,从两水厂运水到社区供水点的路程和运费如下表:
|
到社区供水点的路程(千米) |
运费(元/吨·千米) |
甲厂 |
20 |
12 |
乙厂 |
14 |
15 |
若某天调运水的总运费为26700元,则从甲、乙两水厂各调运多少吨饮用水?
设从甲厂调运饮用水
吨,总运费为W元,试写出W关于与
的函数关系式,怎样安排调运方案才能使每天的总运费最省?
如图(1),在直角坐标系xOy中,抛物线与x轴交于A、B两点,交y轴于点C,过A点的直线与抛物线的另一交点为D(m,3),与y轴相交于点E,点A的坐标为(-1,0),∠BAD=45°,点P是抛物线上的一点,且点P在第一象限.
(1)求直线AD和抛物线的解析式;
(2)若S△PBC:S△BOC=2:3,求点P的坐标;
(3)如图(2),若M为抛物线的顶点,点Q为y轴上一点,求使QM+QB最小时,点Q的坐标,并求QM+QB的最小值.
如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD.
(1)求证:△BCE≌△ACD.
(2)求证:AB⊥AD.
某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)满足一次函数且关系如下表:
时间t(天) |
1 |
3 |
6 |
10 |
36 |
… |
日销售量m(件) |
94 |
90 |
84 |
76 |
24 |
… |
未来40天内,每天的销售价格y(元)与时间t(天)的函数关系式如下:
每天的销售价格y(元) |
当1≤t≤20时,y1=![]() |
当20<t≤40时,y2=![]() |
(1)求日销售量m(件)与时间t(天)的函数关系;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少;
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙0与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=12,AD=8,求BF的长.
(1)如图①,在边长为1个单位长度的小正方形组成的网络中,给出了格点△ABC(顶点是网络线的交点)和点A1.画出一个格点A1B1C1,使它与△ABC全等且A与A1是对应点;
(2)如图②,已知△ABC 的三个顶点的坐标分别为A(-3,-3),B(-2,-1)C(-1,-2).
①画出△ABC关于x轴对称的图形;
②点B关于y轴对称的点的坐标为