游客
题文

计算 
画出函数y=-x2+1的图象
已知:如图,E,F分别是□ABCD的边AD,BC的中点.求证:AF=CE.

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质 二元二次方程组
登录免费查看答案和解析
相关试题

如图,直线 y = x + b 与双曲线 y = k x ( k 为常数, k 0 ) 在第一象限内交于点 A ( 1 , 2 ) ,且与 x 轴、 y 轴分别交于 B C 两点.

(1)求直线和双曲线的解析式;

(2)点 P x 轴上,且 ΔBCP 的面积等于2,求 P 点的坐标.

求证:对角线互相垂直的平行四边形是菱形.

小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.

已知:如图,在 ABCD 中,对角线 AC BD 交于点 O   

求证:  

已知点 O 是正方形 ABCD 对角线 BD 的中点.

(1)如图1,若点 E OD 的中点,点 F AB 上一点,且使得 CEF = 90 ° ,过点 E ME / / AD ,交 AB 于点 M ,交 CD 于点 N .求证:

AEM = FEM ②点 F AB 的中点;

(2)如图2,若点 E OD 上一点,点 F AB 上一点,且使 DE DO = AF AB = 1 3 ,请判断 ΔEFC 的形状,并说明理由;

(3)如图3,若 E OD 上的动点(不与 O D 重合),连接 CE ,过 E 点作 EF CE ,交 AB 于点 F ,当 DE DB = m n 时,请猜想 AF AB 的值(请直接写出结论).

如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( 1 , 0 ) B ( 1 , 1 ) 两点.

(1)求该抛物线的解析式;

(2)阅读理解:

在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 b 1 为常数,且 k 1 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 b 2 为常数,且 k 2 0 ) ,若 l 1 l 2 ,则 k 1 · k 2 = 1

解决问题:

①若直线 y = 3 x 1 与直线 y = mx + 2 互相垂直,求 m 的值;

②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A B 重合),求点 M 到直线 AB 的距离的最大值.

如图,已知 AB O 的直径,过 O 点作 OP AB ,交弦 AC 于点 D ,交 O 于点 E ,且使 PCA = ABC

(1)求证: PC O 的切线;

(2)若 P = 60 ° PC = 2 ,求 PE 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号