已知,如图,在△ABC中AB=AC,点P是△ABC的中线AD上的任意一点(不与点A重合.将线段AP绕点A逆时针旋转到AQ,使.∠PAQ=∠BAC,连接BP,CQ.求证:BP=CQ
设直线BP与直线CQ相交于点E,∠BAC=α,∠BEC="β," ①若点P在线段AD上移动(不与点A重合),则“α与β之间有怎样的数量关系?并说明理由. ②若点P在直线AD上移动(不与点A重合).则α与β之间有怎样的数量关系?请直接写出你的结论.
某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为3万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.4万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为 万元.
(2)如果该养殖户第3年的养殖成本为6.456万元,求可变成本平均每年增长的百分率?
已知抛物线
(1)该抛物线的对称轴是 ,顶点坐标 ;
(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;
x |
… |
… |
|||||
y |
… |
… |
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
从全校1200名学生中随机选取一部分学生进行调查,调查情况:A:上网时间小时;B:1小时<上网时间
小时;C:4小时<上网时间
小时;D:上网时间>7小时.统计结果制成了如图统计图:
(1)参加调查的学生有 人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.
九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
(1)计算:
(2)解方程: