今年五一节,小明和妹妹准备随旅行社去北京游玩,可到了旅行社发现,(组团中)只剩下最后一个名额,谁去呢?小明想了一个办法:他拿出一个装有质地、大小相同的个红球和
个白球袋子,让爸爸从中摸出一个球,如果摸出的是红球妹妹去,如果摸出的是白球则小明去。
爸爸说这个办法不公平,请你利用概率的知识解释原因;
若爸爸从袋中取出3个白球,再用小明提出的办法确定谁去,请问摸球的结果是对小明有利还是对妹妹有利,说明理由。
如图,已知抛物线图象经过A(-1,0),B(4,0)两点.
(1)求抛物线的解析式;
(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.
如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.
(1)求反比例函数和一次函数的解析式;
(2)若点D的坐标为(1,0),求△ACD的面积.
如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.
(1)求证:直线AB是⊙O的切线.
(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)
在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.
请你根据以上统计图提供的信息,回答下列问题:
(1)随机抽查了 名学生;
(2)补全图中的条形图;
(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.
如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.