如图,A、B两个转盘均被平均分成三个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.小敏分别转动两个转盘, 当两个转盘停止后,小敏把A转盘指针所指区域内的数字记为,B转盘指针所指区域内的数字记为
.这样就确定了点P的坐标
.(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)求点P落在坐标轴上的概率.
设关于的一元二次方程
有两个实数根
、
,问是否存在k使得
成立的情况?
已知甲同学手中藏有三张分别标有数字,
,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为
,
.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的,
能使得
有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.
如图1,在平面直角坐标系中,二次函数y=ax2 -2x+2的图象与y轴交于点C,以OC为一边向左侧作正方形OCBA,点B刚好落在抛物线上.
(1)求a的值;
(2)若点D在二次函数y=ax2 -2x+2的图象的对称轴上,点E在二次函数y=ax2﹣2x+2的图象上,是否存在以B,C,D,E四点为顶点的四边形为平行四边形?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.
(3)如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°)。在旋转过程中,若点A1落在二次函数y=ax2﹣2x+2的图象对称轴上,求出此时的点B1的坐标.
已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图①,当点D在边BC上时,求证:①BD=CF,②AC=CF+CD;
(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.