游客
题文

郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:

种植种类
成本(万元/亩)
销售额(万元/亩)
康乃馨
2.4
3
玫瑰花
2
2.5

(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)
(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?
(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?

科目 数学   题型 解答题   难度 中等
知识点: 分式方程的应用 一元一次不等式的应用 一次函数的应用
登录免费查看答案和解析
相关试题

为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:

(1)本次共调查了   名学生; C 组所在扇形的圆心角为   度;

(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?

(3)若 E 组14名学生中有4人满分,设这4名学生为 E 1 E 2 E 3 E 4 ,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到 E 1 E 2 的概率.

竞赛成绩统计表(成绩满分100分)

组别

分数

人数

A

75 < x 80

4

B

80 < x 85

C

85 < x 90

10

D

90 < x 95

E

95 < x 100

14

合计

(1)先化简,再求值: ( 3 a 1 a + 1 a + 1 ) ÷ a 2 6 a + 9 a + 1 ,其中 a = 3 + 3

(2)解不等式: 1 7 x 1 8 > 3 x 2 4

如图,已知正方形 ABCD ,点 E BC 边上一点,将 ΔABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与 DAF 的平分线相交于点 H ,与 AE CD 分别相交于点 G M ,连接 HC

(1)求证: AG = GH

(2)若 AB = 3 BE = 1 ,求点 D 到直线 BH 的距离;

(3)当点 E BC 边上(端点除外)运动时, BHC 的大小是否变化?为什么?

公路上正在行驶的甲车,发现前方 20 m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 s (单位: m ) 、速度 v (单位: m / s ) 与时间 t (单位: s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.

(1)当甲车减速至 9 m / s 时,它行驶的路程是多少?

(2)若乙车以 10 m / s 的速度匀速行驶,两车何时相距最近,最近距离是多少?

如图,已知在 O 中, AB ̂ = BC ̂ = CD ̂ OC AD 相交于点 E

求证:(1) AD / / BC

(2)四边形 BCDE 为菱形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号