如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.
如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.
(1)请你判断BF与CD的位置关系,并说明理由;
(2)求∠3的度数.
解不等式组,并将解集在数轴上表示出来.
x取哪些非负整数时,的值大于
与1的差.
解方程组:
小明是积极思考,喜欢探究问题的同学。一天,如图1,他将直角三角板ABC(∠ACB=30°,∠ABC=60°)和直角三角板ADE(∠DAE=∠DEA=45°)摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A顺时针方向旋转,记旋转角为
(1)当_____时,AD∥BC,在图3中画出相应图形;
(2)若当三角板ADE绕点A顺时针方向旋转过程中,两三角板某一边平行(不共线)。例如,如图4,,此时DE∥BC,请你写出除(1)和
情况以外,两三角板某一边平行(不共线)时,
的所有可能的度数________________.