现有8名奥运会志愿者,其中志愿者通晓日语,
通晓俄语,
通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;
(Ⅱ)求和
不全被选中的概率.
(本小题满分13分)已知均为等差数列,且
,求数列
的前100项之和。
(本小题满分14分) 已知函数在
处取得极值。
(Ⅰ)求函数的解析式;
(Ⅱ)求证:对于区间上任意两个自变量的值
,都有
;
(Ⅲ)若过点可作曲线
的
三条切线,求实数
的取值范围。
(本小题满分13分)已知函数,其中
为实数.
(Ⅰ) 若在
处取得的极值为
,求
的值;
(Ⅱ)若在区间
上为减函数,且
,求
的取值范围.
(本小题满分12分) 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本小题满分12分)在△ABC中,已知B=45°,D是BC边上的一点,
AD=10,AC=14,DC=6,求AB的长.