游客
题文

在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.
求此抛物线的解析式
点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.
⑴甲、乙两种品牌食用油各被抽取了多少瓶用于检测?
⑵在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?

解方程: 2 x + x x + 3 = 1

如图,已知O是平面直角坐标系的原点,半径为1的⊙B经过点O,且与xy
轴分别交于点AC,点A的坐标为(-,0),AC的延长线与⊙B的切线OD
交于点D.
(1)求OC的长和∠CAO的度数;
(2)求点D的坐标;
(3)求过点AOD三点的抛物线的解析式;
(4)在(3)中,点P是抛物线上的一点,试确定点P的位置,使得△AOP
面积与△AOC的面积相等.

在△ABC中,BC=6,AC=4,∠C=45o,在BC上有一动点P,过PPDBAAC相交于点D,连结AP,设BP=x,△APD的面积为y.
(1)求yx之间的函数关系式,并指出自变量x的取值范围;
(2)是否存在点P,使△APD的面积最大?若存在,求出BP的长,并求出
APD面积的最大值.

一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:

手机型号
A型
B型
C型
进价(单位:元/部)
900
1200
1100
预售价(单位:元/部)
1200
1600
1300

(1)用含xy的式子表示购进C型手机的部数;
(2)求出yx之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号