在△中,AD⊥BC,
(1)利用尺规作图,作△外接圆⊙O;
(2)判断:AC和⊙O的位置关系,并说明理由;
(3)若AC=10,AD=8,求⊙O的直径;
小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米(注意:根据光的反射定律:反射角等于入射角).
(本题满分l0分)
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出四个不同类型的正确结论;
①_____________;②__________;③__________;④______.(2)若BC=8,ED=2,求⊙O的半径.
如图,已知△ADE和△ABC是位似图形,∠A=30°,DE垂直平分AC,且DE=2.(1)求∠C的度数.
(2)求BC的长度.
请判断关于的一元二次方程
的根的情况,并说明理由.如果方程有根,请写出方程的根;如果没有根,请通过只改变常数项的值,写出一个有实数根的一元二次方程.
在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球,求“两次取的小球的标号相同”的概率,请借助列表法或树形图说明理由.