如图6,已知动圆M过定点F(1,0)且与x轴相切,点F 关于圆心M 的对称点为 F',动点F’的轨迹为C.
(1)求曲线C的方程;
(2)设是曲线C上的一个定点,过点A任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点P 、Q.
①证明:直线PQ的斜率为定值;
②记曲线C位于P 、Q两点之间的那一段为l.若点B在l上,且点B到直线PQ的
距离最大,求点B的坐标.
在中,角
,
,
所对的边分别是
,
,
,已知
,
.
(1)若的面积等于
,求
,
;
(2)若,求
的面积.
已知函数,
,
,其中
,且
.
⑴当时,求函数
的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数
,存在非零实数
(
),使得
成立,求实数
的取值范围.
已知函数.
(Ⅰ)若,且对于任意
恒成立,试确定实数
的取值范围;
(Ⅱ)设函数,
求证:
数列{}的前n项和为
,
.
(Ⅰ)设,证明:数列
是等比数列;
(Ⅱ)求数列的前
项和
;
(Ⅲ)若,
.求不超过
的最大整数的值.
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
,四边形ABCD是正方形.
(Ⅰ)求证;
(Ⅱ)求四棱锥E-ABCD的体积.