如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥轴于点C,A
,B
.动点P从O点出发,沿
轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设
点移动的时间为秒,△OPQ与直角梯形OABC重叠部分的面积为S.
求经过O、A、B三点的抛物线解析式;
求S与t的函数关系式;
将△OPQ绕着点
逆时针旋转90°,是否存在t,使得△OPQ的顶点为O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
作图题(不写作法)
已知:如下图所示,
①作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.
②在x轴上确定点P,使PA+PC最小.
某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了 缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.
求证:△ABE≌△CAD.
如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
解方程: