求证:当a>1时,有
如图,⊙的半径为6,线段
与⊙
相交于点
、
,
,
,
与⊙
相交于点
.
(1)求长;
(2)当⊥
时,求证:
.
已知函数:.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若对于任意的,若函数
在区间
上有最值,
求实数的取值范围.
已知抛物线,
为坐标原点,
为抛物线的焦点,直线
与抛物线
相交于不同的两点
,
,且
.
(1)求抛物线的方程.
(2)若直线过点
交抛物线于不同的两点
,
,交
轴于点
,且
,
,对任意的直线
,
是否为定值?若是,求出
的值;否则,说明理由.
已知四棱锥,其中
,
,
,
∥
,
为
的中点.
(Ⅰ)求证:∥面
;
(Ⅱ)求证:面;
(Ⅲ)求四棱锥的体积.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的a,b的值;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)