游客
题文

某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台 A 1 B 1 C 1 D 1 - A B C D ,上不是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱 A B C D - A 2 B 2 C 2 D 2 .

image.png

(1)证明:直线 B 1 D 1 平面 A C C 2 A 2
(2)现需要对该零部件表面进行防腐处理,已知 A B = 10 , A 1 B 1 = 20 , A A 2 = 30 , A A 1 = 13 (单位:厘米),每平方厘米的加工处理费为 0 . 20 元,需加工处理费多少元?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数f(x)=﹣x3+x2+3x+a.
(1)求f(x)的单调区间;
(2)若f(x)在区间[﹣3,3]上的最小值为,求a的值.

形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次水平摇动三个游戏盘,当小球静止后,就完成了一局游戏.

(Ⅰ)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(Ⅱ)用随机变量ξ表示一局游戏后,小球停在阴影部分的事件个数与小球没有停在阴影部分的事件个数之差的绝对值,求随机变量ξ的分布列及数学期望.

红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.
(1)求红队至少一名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.

已知函数f(x)=在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?

设函数f(x)=x3x2﹣2x﹣
(1)求函数f(x)的单调递增、递减区间;
(2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号